Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405942

RESUMO

The first-generation Spike-alone-based COVID-19 vaccines have successfully contributed to reducing the risk of hospitalization, serious illness, and death caused by SARS-CoV-2 infections. However, waning immunity induced by these vaccines failed to prevent immune escape by many variants of concern (VOCs) that emerged from 2020 to 2024, resulting in a prolonged COVID-19 pandemic. We hypothesize that a next-generation Coronavirus (CoV) vaccine incorporating highly conserved non-Spike SARS-CoV-2 antigens would confer stronger and broader cross-protective immunity against multiple VOCs. In the present study, we identified ten non-Spike antigens that are highly conserved in 8.7 million SARS-CoV-2 strains, twenty-one VOCs, SARS-CoV, MERS-CoV, Common Cold CoVs, and animal CoVs. Seven of the 10 antigens were preferentially recognized by CD8+ and CD4+ T-cells from unvaccinated asymptomatic COVID-19 patients, irrespective of VOC infection. Three out of the seven conserved non-Spike T cell antigens belong to the early expressed Replication and Transcription Complex (RTC) region, when administered to the golden Syrian hamsters, in combination with Spike, as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) (i.e., combined mRNA/LNP-based pan-CoV vaccine): (i) Induced high frequencies of lung-resident antigen-specific CXCR5+CD4+ T follicular helper (TFH) cells, GzmB+CD4+ and GzmB+CD8+ cytotoxic T cells (TCYT), and CD69+IFN-γ+TNFα+CD4+ and CD69+IFN-γ+TNFα+CD8+ effector T cells (TEFF); and (ii) Reduced viral load and COVID-19-like symptoms caused by various VOCs, including the highly pathogenic B.1.617.2 Delta variant and the highly transmittable heavily Spike-mutated XBB1.5 Omicron sub-variant. The combined mRNA/LNP-based pan-CoV vaccine could be rapidly adapted for clinical use to confer broader cross-protective immunity against emerging highly mutated and pathogenic VOCs.

2.
Front Immunol ; 15: 1328905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318166

RESUMO

Background: The coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has decreased significantly, the long-term outlook of COVID-19 remains a serious cause of morbidity and mortality worldwide, with the mortality rate still substantially surpassing even that recorded for influenza viruses. The continued emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, has prolonged the COVID-19 pandemic and underscores the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. Methods: We designed a multi-epitope-based coronavirus vaccine that incorporated B, CD4+, and CD8+ T- cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-variant SARS-CoV-2 vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. Results: The pan-variant SARS-CoV-2 vaccine (i) is safe , (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells , and (iii) provides robust protection against morbidity and virus replication. COVID-19-related lung pathology and death were caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2), and Omicron (B.1.1.529). Conclusion: A multi-epitope pan-variant SARS-CoV-2 vaccine bearing conserved human B- and T- cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that facilitated virus clearance, and reduced morbidity, COVID-19-related lung pathology, and death caused by multiple SARS-CoV-2 VOCs.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Proteção Cruzada , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito T/genética , Pandemias , SARS-CoV-2/genética
3.
J Immunol ; 212(4): 576-585, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38180084

RESUMO

SARS-CoV-2 variants of concern (VOCs) continue to evolve and reemerge with chronic inflammatory long COVID sequelae, necessitating the development of anti-inflammatory therapeutic molecules. Therapeutic effects of the receptor for advanced glycation end products (RAGE) were reported in many inflammatory diseases. However, a therapeutic effect of RAGE in COVID-19 has not been reported. In the present study, we investigated whether and how the RAGE-Ig fusion protein would have an antiviral and anti-inflammatory therapeutic effect in the COVID-19 system. The protective therapeutic effect of RAGE-Ig was determined in vivo in K18-hACE2 transgenic mice and Syrian golden hamsters infected with six VOCs of SARS-CoV-2. The underlying antiviral mechanism of RAGE-Ig was determined in vitro in SARS-CoV-2-infected human lung epithelial cells (BEAS-2B). Following treatment of K18-hACE2 mice and hamsters infected with various SARS-CoV-2 VOCs with RAGE-Ig, we demonstrated (1) significant dose-dependent protection (i.e., greater survival, less weight loss, lower virus replication in the lungs); (2) a reduction of inflammatory macrophages (F4/80+/Ly6C+) and neutrophils (CD11b+/Ly6G+) infiltrating the infected lungs; (3) a RAGE-Ig dose-dependent increase in the expression of type I IFNs (IFN-α and IFN-ß) and type III IFN (IFNλ2) and a decrease in the inflammatory cytokines (IL-6 and IL-8) in SARS-CoV-2-infected human lung epithelial cells; and (4) a dose-dependent decrease in the expression of CD64 (FcgR1) on monocytes and lung epithelial cells from symptomatic COVID-19 patients. Our preclinical findings revealed type I and III IFN-mediated antiviral and anti-inflammatory therapeutic effects of RAGE-Ig protein against COVID-19 caused by multiple SARS-CoV-2 VOCs.


Assuntos
COVID-19 , Melfalan , SARS-CoV-2 , gama-Globulinas , Cricetinae , Humanos , Camundongos , Animais , Mesocricetus , Receptor para Produtos Finais de Glicação Avançada/genética , Síndrome Pós-COVID-19 Aguda , Camundongos Transgênicos , Antivirais/farmacologia , Antivirais/uso terapêutico , Modelos Animais de Doenças , Pulmão
4.
J Virol ; 97(12): e0109623, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38038432

RESUMO

IMPORTANCE: Although the current rate of SARS-CoV-2 infections has decreased significantly, COVID-19 still ranks very high as a cause of death worldwide. As of October 2023, the weekly mortality rate is still at 600 deaths in the United States alone, which surpasses even the worst mortality rates recorded for influenza. Thus, the long-term outlook of COVID-19 is still a serious concern outlining the need for the next-generation vaccine. This study found that a prime/pull coronavirus vaccine strategy increased the frequency of functional SARS-CoV-2-specific CD4+ and CD8+ memory T cells in the lungs of SARS-CoV-2-infected triple transgenic HLA-DR*0101/HLA-A*0201/hACE2 mouse model, thereby resulting in low viral titer and reduced COVID-19-like symptoms.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL11/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Epitopos , Pulmão/imunologia , Pulmão/virologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus , Modelos Animais de Doenças
5.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292861

RESUMO

Background: The Coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of SARS-CoV-2 infections has decreased significantly; the long-term outlook of COVID-19 remains a serious cause of high death worldwide; with the mortality rate still surpassing even the worst mortality rates recorded for the influenza viruses. The continuous emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, have prolonged the COVID-19 pandemic and outlines the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. Methods: In the present study, we designed a multi-epitope-based Coronavirus vaccine that incorporated B, CD4+, and CD8+ T cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-Coronavirus vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. Results: The Pan-Coronavirus vaccine: (i) is safe; (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells; and (iii) provides robust protection against virus replication and COVID-19-related lung pathology and death caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2) and Omicron (B.1.1.529). Conclusions: A multi-epitope pan-Coronavirus vaccine bearing conserved human B and T cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that cleared the virus, and reduced COVID-19-related lung pathology and death caused by multiple SARS-CoV-2 VOCs.

6.
Pediatr Res ; 90(5): 1073-1080, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34304252

RESUMO

BACKGROUND: Understanding SARS-CoV-2 infection in children is necessary to reopen schools safely. METHODS: We measured SARS-CoV-2 infection in 320 learners [10.5 ± 2.1 (sd); 7-17 y.o.] at four diverse schools with either remote or on-site learning. Schools A and B served low-income Hispanic learners; school C served many special-needs learners, and all provided predominantly remote instruction. School D served middle- and upper-income learners, with predominantly on-site instruction. Testing occurred in the fall (2020), and 6-8 weeks later during the fall-winter surge (notable for a tenfold increase in COVID-19 cases). Immune responses and mitigation fidelity were also measured. RESULTS: We found SARS-CoV-2 infections in 17 learners only during the surge. School A (97% remote learners) had the highest infection (10/70, 14.3%, p < 0.01) and IgG positivity rates (13/66, 19.7%). School D (93% on-site learners) had the lowest infection and IgG positivity rates (1/63, 1.6%). Mitigation compliance [physical distancing (mean 87.4%) and face-covering (91.3%)] was remarkably high at all schools. Documented SARS-CoV-2-infected learners had neutralizing antibodies (94.7%), robust IFN-γ + T cell responses, and reduced monocytes. CONCLUSIONS: Schools can implement successful mitigation strategies across a wide range of student diversity. Despite asymptomatic to mild SARS-CoV-2 infection, children generate robust humoral and cellular immune responses. IMPACT: Successful COVID-19 mitigation was implemented across a diverse range of schools. School-associated SARS-CoV-2 infections reflect regional rates rather than remote or on-site learning. Seropositive school-aged children with asymptomatic to mild SARS-CoV-2 infections generate robust humoral and cellular immunity.


Assuntos
COVID-19/virologia , Imunidade Celular , Imunidade Humoral , SARS-CoV-2/imunologia , Estudantes , Adolescente , Fatores Etários , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/imunologia , Teste para COVID-19 , California/epidemiologia , Criança , Controle de Doenças Transmissíveis , Educação a Distância , Feminino , Interações Hospedeiro-Patógeno , Humanos , Incidência , Masculino , SARS-CoV-2/patogenicidade
7.
medRxiv ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33791712

RESUMO

BACKGROUND: Understanding SARS-CoV-2 infection in children is necessary to reopen schools safely. METHODS: We measured SARS-CoV-2 infection in 320 learners [10.5 ± 2.1(sd); 7-17 y.o.] at four diverse schools with either remote or on-site learning. Schools A and B served low-income Hispanic learners; school C served many special-needs learners; and all provided predominantly remote instruction. School D served middle- and upper-income learners, with predominantly on-site instruction. Testing occurred in the fall (2020), and 6-8 weeks later during the fall-winter surge (notable for a tenfold increase in COVID-19 cases). Immune responses and mitigation fidelity were also measured. RESULTS: We found SARS-CoV-2 infections in 17 learners only during the surge. School A (97% remote learners) had the highest infection (10/70, 14.3%, p<0.01) and IgG positivity rates (13/66, 19.7%). School D (93% on-site learners) had the lowest infection and IgG positivity rates (1/63, 1.6%). Mitigation compliance [physical distancing (mean 87.4%) and face covering (91.3%)] was remarkably high at all schools. Documented SARS-CoV-2-infected learners had neutralizing antibodies (94.7%), robust IFN-γ+ T cell responses, and reduced monocytes. CONCLUSION: Schools can implement successful mitigation strategies across a wide range of student diversity. Despite asymptomatic to mild SARS-CoV-2 infection, children generate robust humoral and cellular immune responses. KEY POINTS: Successful COVID-19 mitigation was implemented across a diverse range of schools.School-associated SARS-CoV-2 infections reflect regional rates rather than remote or on-site learning.Seropositive school-aged children with asymptomatic to mild SARS-CoV-2 infections generate robust humoral and cellular immunity.

8.
Nat Aging ; 1(11): 1038-1052, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-37118336

RESUMO

In this study, peripheral blood mononuclear cells from young and old patients with COVID-19 were examined phenotypically, transcriptionally and functionally to reveal age-, time- and severity-specific adaptations. Gene signatures within memory B cells and plasmablasts correlated with reduced frequency of antigen-specific B cells and neutralizing antibodies in older patients with severe COVID-19. Moreover, these patients exhibited exacerbated T cell lymphopenia, which correlated with lower plasma interleukin-2, and diminished antigen-specific T cell responses. Single-cell RNA sequencing revealed augmented signatures of activation, exhaustion, cytotoxicity and type I interferon signaling in memory T and natural killer cells with age. Although cytokine storm was evident in both age groups, older individuals exhibited elevated levels of myeloid cell recruiting factors. Furthermore, we observed redistribution of monocyte and dendritic cell subsets and emergence of a suppressive phenotype with severe disease, which was reversed only in young patients over time. This analysis provides new insights into the impact of aging on COVID-19.


Assuntos
COVID-19 , Leucócitos Mononucleares , Humanos , SARS-CoV-2 , Aclimatação , Imunidade
9.
BMC Genomics ; 20(1): 663, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429699

RESUMO

BACKGROUND: Iron is an essential micronutrient for the growth and development of virtually all living organisms, playing a pivotal role in the proliferative capability of many bacterial pathogens. The impact that the bioavailability of iron has on the transcriptional response of bacterial species in the CMNR group has been widely reported for some members of the group, but it hasn't yet been as deeply explored in Corynebacterium pseudotuberculosis. Here we describe for the first time a comprehensive RNA-seq whole transcriptome analysis of the T1 wild-type and the Cp13 mutant strains of C. pseudotuberculosis under iron restriction. The Cp13 mutant strain was generated by transposition mutagenesis of the ciuA gene, which encodes a surface siderophore-binding protein involved in the acquisition of iron. Iron-regulated acquisition systems are crucial for the pathogenesis of bacteria and are relevant targets to the design of new effective therapeutic approaches. RESULTS: Transcriptome analyses showed differential expression in 77 genes within the wild-type parental T1 strain and 59 genes in Cp13 mutant under iron restriction. Twenty-five of these genes had similar expression patterns in both strains, including up-regulated genes homologous to the hemin uptake hmu locus and two distinct operons encoding proteins structurally like hemin and Hb-binding surface proteins of C. diphtheriae, which were remarkably expressed at higher levels in the Cp13 mutant than in the T1 wild-type strain. These hemin transport protein genes were found to be located within genomic islands associated with known virulent factors. Down-regulated genes encoding iron and heme-containing components of the respiratory chain (including ctaCEF and qcrCAB genes) and up-regulated known iron/DtxR-regulated transcription factors, namely ripA and hrrA, were also identified differentially expressed in both strains under iron restriction. CONCLUSION: Based on our results, it can be deduced that the transcriptional response of C. pseudotuberculosis under iron restriction involves the control of intracellular utilization of iron and the up-regulation of hemin acquisition systems. These findings provide a comprehensive analysis of the transcriptional response of C. pseudotuberculosis, adding important understanding of the gene regulatory adaptation of this pathogen and revealing target genes that can aid the development of effective therapeutic strategies against this important pathogen.


Assuntos
Corynebacterium pseudotuberculosis/genética , Corynebacterium pseudotuberculosis/metabolismo , Perfilação da Expressão Gênica , Deficiências de Ferro , Corynebacterium pseudotuberculosis/crescimento & desenvolvimento , Corynebacterium pseudotuberculosis/fisiologia , Redes Reguladoras de Genes , Ilhas Genômicas/genética , Viabilidade Microbiana/genética , Mutação , Transcrição Gênica
10.
Gene ; 677: 349-360, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30098432

RESUMO

Corynebacterium pseudotuberculosis has been widely studied in an effort to understand its biological evolution. Transcriptomics has revealed possible candidates for virulence and pathogenicity factors of strain 1002 (biovar Ovis). Because C. pseudotuberculosis is classified into two biovars, Ovis and Equi, it was interesting to assess the transcriptional profile of biovar Equi strain 258, the causative agent of ulcerative lymphangitis. The genome of this strain was re-sequenced; the reassembly was completed using optical mapping technology, and the sequence was subsequently re-annotated. Two growth conditions that occur during the host infection process were simulated for the transcriptome: the osmotic and acid medium. Genes that may be associated with the microorganism's resilience under unfavorable conditions were identified through RNAseq, including genes present in pathogenicity islands. The RT-qPCR was performed to confirm the results in biological triplicate for each condition for some genes. The results extend our knowledge of the factors associated with the spread and persistence of C. pseudotuberculosis during the infection process and suggest possible avenues for studies related to the development of vaccines, diagnosis, and therapies that might help minimize damage to agribusinesses.


Assuntos
Corynebacterium pseudotuberculosis/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Animais , Proteínas de Bactérias/genética , Infecções por Corynebacterium/microbiologia , Perfilação da Expressão Gênica/métodos , Genoma Bacteriano/genética , Ovinos , Virulência/genética , Fatores de Virulência/genética
11.
Sci Rep ; 7(1): 14321, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084985

RESUMO

Lipophosphoglycan (LPG) is a key virulence factor expressed on the surfaces of Leishmania promastigotes. Although LPG is known to activate macrophages, the underlying mechanisms resulting in the production of prostaglandin E2 (PGE2) via signaling pathways remain unknown. Here, the inflammatory response arising from stimulation by Leishmania infantum LPG and/or its lipid and glycan motifs was evaluated with regard to PGE2 induction. Intact LPG, but not its glycan and lipid moieties, induced a range of proinflammatory responses, including PGE2 and nitric oxide (NO) release, increased lipid droplet formation, and iNOS and COX2 expression. LPG also induced ERK-1/2 and JNK phosphorylation in macrophages, in addition to the release of PGE2, MCP-1, IL-6, TNF-α and IL-12p70, but not IL-10. Pharmacological inhibition of ERK1/2 and PKC affected PGE2 and cytokine production. Moreover, treatment with rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ), also modulated the release of PGE2 and other proinflammatory mediators. Finally, we determined that LPG-induced PPAR-γ signaling occurred via TLR1/2. Taken together, these results reinforce the role played by L. infantum-derived LPG in the proinflammatory response seen in Leishmania infection.


Assuntos
Glicoesfingolipídeos/imunologia , Leishmania infantum/fisiologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , PPAR gama/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Células Cultivadas , Dinoprostona/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , Fatores de Virulência
12.
Parasit Vectors ; 6: 54, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23497381

RESUMO

BACKGROUND: The dominant, cell surface lipophosphoglycan (LPG) of Leishmania is a multifunctional molecule involved in the interaction with vertebrate and invertebrate hosts. Although the role of LPG on infection has been extensively studied, it is not known if LPG interspecies variations contribute to the different immunopathologies of leishmaniases. To investigate the issue of interspecies polymorphisms, two Leishmania species from the New World that express structural variations of side chains of LPG repeat units were examined. In this context, the procyclic form of L. braziliensis LPG (strain M2903), is devoid of side chains, while the L. infantum LPG (strain BH46) has up to three glucoses residues in the repeat units. METHODS: Mice peritoneal macrophages from Balb/c, C57BL/6 and knock-out (TLR2 -/-, TLR4 -/-) were primed with IFN-γ and stimulated with purified LPG from both species. Nitric oxide and cytokine production, MAPKs (ERK, p38 and JNK) and NF-kB activation were evaluated. RESULTS: Macrophages stimulated with L. braziliensis LPG, had a higher TNF-α, IL-1ß, IL-6 and NO production than those stimulated with that of L. infantum. Furthermore, the LPGs from the two species resulted in differential kinetics of signaling via MAPK activation. L. infantum LPG exhibited a gradual activation profile, whereas L. braziliensis LPG showed a sharp but transient activation. L. braziliensis LPG was able to activate NF-kB. CONCLUSION: These data suggest that two biochemically distinct LPGs were able to differentially modulate macrophage functions.


Assuntos
Glicoesfingolipídeos/imunologia , Leishmania braziliensis/imunologia , Leishmania infantum/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Visceral/imunologia , Macrófagos Peritoneais/imunologia , Animais , Células CHO , Cricetinae , Cricetulus , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Glicoesfingolipídeos/química , Glicoesfingolipídeos/isolamento & purificação , Interações Hospedeiro-Parasita , Imunidade Inata , Leishmania braziliensis/metabolismo , Leishmania infantum/metabolismo , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , NF-kappa B/metabolismo , Nitritos/imunologia , Nitritos/metabolismo
13.
PLoS Negl Trop Dis ; 6(2): e1543, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22389743

RESUMO

The essential role of the lipophosphoglycan (LPG) of Leishmania in innate immune response has been extensively reported. However, information about the role of the LPG-related glycoinositolphospholipids (GIPLs) is limited, especially with respect to the New World species of Leishmania. GIPLs are low molecular weight molecules covering the parasite surface and are similar to LPG in sharing a common lipid backbone and a glycan motif containing up to 7 sugars. Critical aspects of their structure and functions are still obscure in the interaction with the vertebrate host. In this study, we evaluated the role of those molecules in two medically important South American species Leishmania infantum and L. braziliensis, causative agents of visceral (VL) and cutaneous Leishmaniasis (CL), respectively. GIPLs derived from both species did not induce NO or TNF-α production by non-primed murine macrophages. Additionally, primed macrophages from mice (BALB/c, C57BL/6, TLR2-/- and TLR4-/-) exposed to GIPLs from both species, with exception to TNF-α, did not produce any of the cytokines analyzed (IL1-ß, IL-2, IL-4, IL-5, IL-10, IL-12p40, IFN-γ) or p38 activation. GIPLs induced the production of TNF-α and NO by C57BL/6 mice, primarily via TLR4. Pre incubation of macrophages with GIPLs reduced significantly the amount of NO and IL-12 in the presence of IFN-γ or lipopolysaccharide (LPS), which was more pronounced with L. braziliensis GIPLs. This inhibition was reversed after PI-specific phospholipase C treatment. A structural analysis of the GIPLs showed that L. infantum has manose rich GIPLs, suggestive of type I and Hybrid GIPLs while L. braziliensis has galactose rich GIPLs, suggestive of Type II GIPLs. In conclusion, there are major differences in the structure and composition of GIPLs from L. braziliensis and L. infantum. Also, GIPLs are important inhibitory molecules during the interaction with macrophages.


Assuntos
Glicoesfingolipídeos/química , Glicoesfingolipídeos/imunologia , Imunidade Inata , Leishmania braziliensis/química , Leishmania braziliensis/imunologia , Leishmania infantum/química , Leishmania infantum/imunologia , Animais , Carboidratos/análise , Citocinas/biossíntese , Glicoesfingolipídeos/isolamento & purificação , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo
14.
Biochim Biophys Acta ; 1820(9): 1354-65, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22093608

RESUMO

BACKGROUND: Protozoan parasites of the genus Leishmania cause a number of important diseases in humans and undergo a complex life cycle, alternating between a sand fly vector and vertebrate hosts. The parasites have a remarkable capacity to avoid destruction in which surface molecules are determinant for survival. Amongst the many surface molecules of Leishmania, the glycoconjugates are known to play a central role in host-parasite interactions and are the focus of this review. SCOPE OF THE REVIEW: The most abundant and best studied glycoconjugates are the Lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs). This review summarizes the main studies on structure and biological functions of these molecules in New World Leishmania species. MAJOR CONCLUSIONS: LPG and GIPLs are complex molecules that display inter- and intraspecies polymorphisms. They are key elements for survival inside the vector and to modulate the vertebrate immune response during infection. GENERAL SIGNIFICANCE: Most of the studies on glycoconjugates focused on Old World Leishmania species. Here, it is reported some of the studies involving New World species and their biological significance on host-parasite interaction. This article is part of a Special Issue entitled Glycoproteomics.


Assuntos
Glicoconjugados/fisiologia , Glicoesfingolipídeos/genética , Glicosilfosfatidilinositóis/genética , Interações Hospedeiro-Parasita , Leishmania , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/parasitologia , Animais , Sequência de Carboidratos , Glicoconjugados/análise , Glicoconjugados/genética , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Leishmania/química , Leishmania/genética , Leishmania/metabolismo , Leishmania/fisiologia , Modelos Biológicos , Dados de Sequência Molecular , Polimorfismo Genético/fisiologia , Especificidade da Espécie
15.
Belo Horizonte; s.n; 2012. 74 p. ilus.
Tese em Português | LILACS, Coleciona SUS | ID: biblio-938324

RESUMO

O LPG apresenta variações estruturais que são importantes para os diferentes estágios de desenvolvimento do parasito. Nas formas procíclicas, o LPG de L. braziliensis (cepa M2903), não apresenta cadeias laterais enquanto um a dois resíduos de β-glicose podem aparecer nas unidades repetitivas da forma metacíclica. O LPG de L. infantum (cepa BH46), apresenta até três cadeias laterais de glicoses nas unidades repetitivas da forma procíclica e ainda não foi caracterizado nas formas metacíclicas. Esses polimorfismos nas unidades repetitivas do LPG e seu papel na interação com o hospedeiro vertebrado e invertebrado já foram amplamente estudados, sobretudo, para as espécies do Velho Mundo. Entretanto, para a maioria das espécies do Novo Mundo, o papel desses polimorfismos no perfil imunopatológico da doença é ainda desconhecido. Este projeto teve como objetivo avaliar o estudo da interação entre os LPGs de duas espécies epidemiologicamente importantes no Brasil e macrófagos murinos. Estas incluem L. braziliensis e L. infantum, responsáveis pela forma cutânea e visceral, respectivamente.


Neste estudo, os macrófagos peritoneais de camundongos BALB/c, C57BL/6 e C57BL/6 knock-out (TLR2 -/- e TLR4 -/-), foram primados com IFN- e estimulados com LPG de ambas as espécies. A produção de citocinas (IL-1β, IL-2; IL-4, IL-6, IL-10, IL-12p40, IFN- e TNF-α) foi determinada por citometria de fluxo e a concentração de nitrito pelo método de Griess. A ativação de ERK e p38 foi avaliada por Western blot. Os macrófagos estimulados com LPG de L. braziliensis, apresentaram uma maior produção de TNF-α, IL-1β, IL-6 e NO em comparação aos estimulados com LPG de L. infantum. Também foi observada uma cinética de ativação diferencial das MAPK entre os LPGs. Leishmania infantum apresentou uma ativação constante até 45 minutos após estimulação, enquanto L. braziliensis apresentou um único pico de ativação após 15 minutos. Estes dados sugerem que variações interespecíficas no LPG de Leishmania podem ter um papel importante nos eventos iniciais do compartimento imune inato do hospedeiro


Assuntos
Animais , Cobaias , Camundongos , Leishmania/parasitologia , Leishmaniose/genética , Polimorfismo Genético/genética
16.
Belo Horizonte; s.n; 2012. 74 p. ilus.
Tese em Português | LILACS | ID: lil-664656

RESUMO

O LPG apresenta variações estruturais que são importantes para os diferentes estágios de desenvolvimento do parasito. Nas formas procíclicas, o LPG de L. braziliensis (cepa M2903), não apresenta cadeias laterais enquanto um a dois resíduos de β-glicose podem aparecer nas unidades repetitivas da forma metacíclica. O LPG de L. infantum (cepa BH46), apresenta até três cadeias laterais de glicoses nas unidades repetitivas da forma procíclica e ainda não foi caracterizado nas formas metacíclicas. Esses polimorfismos nas unidades repetitivas do LPG e seu papel na interação com o hospedeiro vertebrado e invertebrado já foram amplamente estudados, sobretudo, para as espécies do Velho Mundo. Entretanto, para a maioria das espécies do Novo Mundo, o papel desses polimorfismos no perfil imunopatológico da doença é ainda desconhecido. Este projeto teve como objetivo avaliar o estudo da interação entre os LPGs de duas espécies epidemiologicamente importantes no Brasil e macrófagos murinos. Estas incluem L. braziliensis e L. infantum, responsáveis pela forma cutânea e visceral, respectivamente.


Neste estudo, os macrófagos peritoneais de camundongos BALB/c, C57BL/6 e C57BL/6 knock-out (TLR2 -/- e TLR4 -/-), foram primados com IFN- e estimulados com LPG de ambas as espécies. A produção de citocinas (IL-1β, IL-2; IL-4, IL-6, IL-10, IL-12p40, IFN- e TNF-α) foi determinada por citometria de fluxo e a concentração de nitrito pelo método de Griess. A ativação de ERK e p38 foi avaliada por Western blot. Os macrófagos estimulados com LPG de L. braziliensis, apresentaram uma maior produção de TNF-α, IL-1β, IL-6 e NO em comparação aos estimulados com LPG de L. infantum. Também foi observada uma cinética de ativação diferencial das MAPK entre os LPGs. Leishmania infantum apresentou uma ativação constante até 45 minutos após estimulação, enquanto L. braziliensis apresentou um único pico de ativação após 15 minutos. Estes dados sugerem que variações interespecíficas no LPG de Leishmania podem ter um papel importante nos eventos iniciais do compartimento imune inato do hospedeiro


Assuntos
Animais , Cobaias , Camundongos , Leishmania/parasitologia , Leishmaniose/genética , Polimorfismo Genético/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...